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Abstract
Graph Convolutional Network (GCN) has been commonly applied for semi-supervised learning tasks. However, the
established GCN frequently only considers the given labels in the topology optimization, which may not deliver the best
performance for semi-supervised learning tasks. In this paper, we propose a novel Graph Convolutional Network with
Estimated labels (E-GCN) for semi-supervised learning. The core design of E-GCN is to learn a suitable network topology
for semi-supervised learning by linking both estimated labels and given labels in a centralized network framework. The
major enhancement is that both given labels and estimated labels are utilized for the topology optimization in E-GCN, which
assists the graph convolution implementation for unknown labels evaluation. Experimental results demonstrate that E-GCN
is significantly better than state-of-the-art (SOTA) baselines without estimated labels.

Keywords Semi-supervised · Learning graph convolution · Topology optimization · Estimated labels

1 Introduction

Graphs are powerful instruments and the connection
between real-world objects is often the graph structure,
such as human social networks, paper networks, protein
networks, etc. There are many significant graph applications
such as predicting whether they have an edge between pair
nodes [1, 2], what are the most probable label of nodes
[3], what is the personalization needs of users [4, 5]. Node
classification can be described as analyzing the features
to obtain hidden information in the graph for nodes with
unknown labels. It is one of the widest topics in current
research [6–10].
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Node classification develops swiftly after taking advan-
tage of network topology. Although the traditional classifi-
cation method can already complete the task significantly,
there is still a lot of room for improvement in classifica-
tion performance due to the inherent sparseness and noise
of usual networks.

At present, to improve classification performance, the
most frequently operated measure is to make full employ of
label information, node characteristics, and network topol-
ogy. Recently, with the improvement of graph convolutional
networks, researchers have extended Convolutional Neural
Networks (CNN) to non-Euclidean graph data with great
success. Among the node classification research, Graph
Convolutional Network (GCN) [3], which simplifies Cheb-
Net, has drawn wide attention as a result of its simplicity
and high performance. As illustrated in Fig. 1a, the purpose
of GCN is to perform specific filtering operations on fea-
tures and employ a fully connected network process. GCN
employs network topology and labels information to train,
but they are fixed. As illustrated in Fig. 1b, Yang et al.
[11] utilized the given labels to learn the graph network
simultaneously, which provides more flexibility compared
to GCN.

Unfortunately, current GCN research has not fully
explored the information of labels for classified nodes.
Specifically, although Yang et al. [11] assumed some sparse
and noise and dynamically learn the given network topology
and make full employ of the given labels information, the
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Fig. 1 The comparison between GCN, TO-GCN, and our proposed
E-GCN. GCN adopts the designated topology and feature X as
input to learn the parameters W . TO-GCN exploits the given labels
to participate in learning. E-GCN concurrently learns the W to
comprehensively explore the given labels and estimated labels

corresponding information of the classified nodes has not
been considered.

Based on Yang et al. [11], to completely explore the
topology of the graph network and enhance the effective
utilization of the estimated labels of the classified nodes,
we propose a novel Graph Convolutional Network with
Estimated Labels (E-GCN). As illustrated in Fig. 1c,
We initially estimate the maximum possible label of an
unknown label node based on the existing GCN model
and then learn the network topology simultaneously with
the given labels Z and the estimated labels Ze. Compared
with GCN and TO-GCN, our proposed E-GCN has greater
flexibility and accuracy.

Specifically, we first utilize the given labels to optimize
the network topology and estimate the labels of new
vertexes that are adopted to optimize the network topology.
Optimize the network topology by making full explore of
the given labels and estimated labels, and finally learn the
optimal parameters of the model.

Our contributions are two-fold as follows:

• We indicate that the optimization of the model with
estimated labels and the given labels can enhance the

node classification performance in the semi-supervised
learning tasks.

• We propose a novel Graph Convolution with Estimated
Labels for Semi-supervised Node Classification (E-
GCN), which simultaneously learns the topology of the
graph network and the parameters of the fully connected
network with fully explored estimated labels and the
given labels.

2 Related works

2.1 Semi-supervised node classification

Semi-supervised node classification is performed to learn
the potential distribution of the entire data with little labeled
data and a large amount of unlabeled data. Various methods
are available for semi-supervised node classification, and
we focus on two major methods, graph representation-
based, and spectral representation-based graph convolution.

The graph representation projects a high latitude vector
or sparse vector to low latitude, primarily by capturing the
neighbor similarity and community membership of the node
in space. As proposed in [12], walks are constructed using
random wandering over the graph to catch local spatial
information, and finally to extract all spatial information to
attain label-independent embedding.

The spectral-based method of graph convolution is
to complete node classification employing a spectral
representation of a graph. Consider G = (V , E) being an
undirected graph, where V is the set of all vertices vi ∈
V, (i = 1, 2, · · · , N), and E represents the set of all edges
in the graph. A ∈ RN×N denotes the neighborhood matrix
of the graph, which describes the presence or absence of
connections between nodes in the graph, and the value of
element Aij is the binary case of 0 or 1. If the value of
attribute Aij is a real value, the adjacency matrix reflects the
similarity between the nodes of the graph in the encoding for
the similarity measure. As well, we can generate the degree
matrix D from the adjacency matrix, which defines the
degree matrix as a diagonal matrix with a specific element
whose value is Dii = ∑

j Aij .
For M-classification problems the M-dimensional vector

is typically derived after a 1-of-M coding solution,
denoting the probability that a node corresponds to each
classification. Regularization is normally implemented in
schemes with the generic form as follows:

L = LL (f (XL) ,TL) + λf (X)T Lf (X) (1)

where f (•) depicts a vector of classifications mapping node
representations from dimension D to dimension M , TL is a
vector of classification markers of actual nodes, and L =
D − A shows a non-standardized Laplace matrix. The first
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part of the equation is the categorical loss of training the
model on the labeled nodes, and the second part represents
the regularization based on Laplace, λ > 0 signifies the
weight of two items. The labels of the nodes on the graph
are propagated throughout the graph by this approach.

With the increasing requirement for semi-supervised
node classification tasks on large graph datasets, researchers
have proposed various graph convolutional networks [13–
15]. For example, Kipf and Welling [3] proposed a scalable
graph GCN model that can linearly scale the number of
graph edges and learn the graph representation by encoding
the local graph structures and nodes attributes. Yu et al.
[16] proposed a double-convolution graph neural network to
handle the classification of semi-supervised nodes.

2.2 Graph convolutional network

Graph Neural Networks are deep learning-based methods
that function on graphs. Briefly offering an introduction
to deep learning at first, deep learning is a representa-
tional learning method that exploits multilayer perceptron
structures to process nonlinear information, transforming
raw data into high-level, more abstract expressions through
some simple, nonlinear multilayer representational models.
The motivation is to build neural networks that can simu-
late the human brain for analytic learning and mimic the
human brain to give interpretations of the data. Based on
graph convolution and graph embedding in deep learning,
graph neural networks are proposed to aggregate informa-
tion about graph structures. This paper focuses on graph
convolutional neural networks.

GCN is mainly utilized to deal with non-Euclidean graph
data and usually adopts two strategies: spatial convolution
and spectral convolution. Space-based methods update
features by aggregating the spatially nearest neighbor
vectors of each node, and in these methods the convolution
operation is defined by specifying the neighborhood size,
allowing information to be propagated locally. Recently,
Jiang et al. [17] proposed utilizing a Gaussian mixture
model to encode adjacent regions to solve the aggregation
process.

Spectral convolution employs a convolution operator and
then performs spectral filters by decomposing the graph
Laplacian. According to spectral convolution, the attributes
of the nodes are regarded as the signals in the graph and the
convolution operations are directly applied to the spectrum
of the graph.

gθ ∗ x = Ugθ(�)UT x (2)

Where x ∈ R
N is a signal and a filter g(θ) = diag(θ)

parameterized by θ ∈ R
N in the Fourier domain, the vectors

U and � are generated from L = D−1/2(D − A)D−1/2

which is the graph Laplacian.

Unfortunately, the spectral method often requires singu-
lar value decomposition. For a large graph, it often leads to
higher computational complexity. To reduce computational
complexity, Defferrard et al. [18] truncated Chebyshev
polynomials as:

gθ ∗ x =
P∑

p=0

θ ′
pTp(L)x (3)

Where Tp and θ ′
p represent Chebyshev polynomials and

coefficients. Equation (3) was further simplified by Kipf
and Welling [3] as:

gθ ∗ x = θ
(
I + D−1/2AD−1/2

)
x (4)

Where I represents the identity matrix. Let Ã = A + I and
D̃m = ∑

j Ãnj , (4) can be rephrased as:

H = σ
(
D̃−1/2ÃD̃−1/2x�

)
(5)

where σ(•) represents the nonlinear activation function,
such as Sof tmax or ReLU . As illustrated in Fig. 1a,
Kipf and Welling [3] proved that stacking two GCNs may
produce outstanding performance, (5) becomes:

Z = f (X, A) = soft max
(
ÂRelu

(
ÂX�(0)

)
�(1)

)
(6)

where Â represents D̃−1/2ÃD̃−1/2. �(0) and �(1) will be
obtained by minimizing the cross-entropy error of label
nodes.

� = −
∑

n∈Vl

C∑

c=1

Ync log (Znc) (7)

where Vl represents the set of labeled nodes.

2.3 Topology optimization

Label propagation is to estimate the label of the new node
through network topology, features, and the given labels. Li
et al. [19] provided that GCN with the Laplacian smoothing
term performs significantly improve than without. Yang
et al. [11] declared a more obvious network structure
could raise the performance of classification. Network
topology plays a leading role in classification tasks. As
illustrated in Table 1, a Fully Connected Network (FCN)
just employs node features, without graph convolution.

Table 1 Classification results with different topology

Dateset FCN GCN TO-GCN GCN-GT

Citeseer 57.1% 72.0% 72.7% 100%

Cora 56.2% 81.3% 83.1% 100%

PubMed 70.7% 79.2% 79.5% 100%
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Graph Convolutional Networks with Ground Truth (GCN-
GT) adopts the ground truth membership matrix, where
a connection exists between two vertices if and only if
they belong to the same classification and the attribute
is equal to 1. The accuracy of classification is raised
when the network structure becomes clearer. Therefore,
topology optimization is an attractive measure to improve
classification performance.

3 Optimization

The shortcoming of existing work motivates is to improve
the topology of the network. Although existing work has
utilized given labels to redefine network topology, it has
not yet exploited estimated labels of classified nodes.
Therefore, in this paper, we consider utilizing the given
labels and the estimated labels to simultaneously and
jointly refine the network topology. The flow chart of our
proposed design is illustrated in Fig. 1c. In this section, we
first introduce the existing network topology optimization
methods, then Graph Convolution with Estimated Labels for
Semi-supervised Node Classification (E-GCN) is presented.

3.1 Network topology refinement

Semi-supervised classification is mainly to classify nodes
without labels by making full utilization of a limited number
of node labels. The principle behind it is neighboring
vertices in the graph are inclined to enjoy the same labels.
Equation (8) is minimizing the objective function:

L(Y ) = 1

2

∑

i,j

wij

(
yi − yj

)2 (8)

where wij defines the similarity between the vertices
vi and vj . Then consider the topology information and
utilize the given labels to participate in the graph topology
reconstruction. With the assumption that the adjacent
vertices tend to share the same labels and guaranteed
topology value to be non-negative, (2) can be transformed
to:

min
Y

1

2

∑

i,j

aij

∥
∥yi − yj

∥
∥2

2 = min
Y

1

2
Tr

(
YT LY

)

s.t. yn = zn∀vn ∈ Vl

(9)

where zn ∈ {0, 1}1×K represents the true labels and yn ∈
{0, 1}1×K is the predicted labels of the vertex vn. L = D−A

is the Laplacian of the graph. Yang et al. [11] relaxed the Y

to be R
N×K . Equation (9) can be relaxed to:

min
Y

1

2
Tr

(
YT LY

)
+ λ

2
‖Y − Z‖2

F (10)

According to Wang et al. [20], (10) equals to:

min
Y

1

2
Tr

(
LYYT

)
+ λ

2

∥
∥
∥YYT − ZZT

∥
∥
∥

2

F
(11)

To reduce the weight between nodes that don’t belong
to the same class, Yang et al. [11] proposed that if nodes
come from different classes and have high similarity will be
penalized. simultaneously, let O = [

Oij

] = YYT ∈ R
N×N

and Q = [
Qij

] = ZZT ∈ {0, 1}N×N , (11) can be rewritten
as:

min
Y

1

2
Tr(LO)+ λ

2
‖O −Q‖2

F + α

2

∑

i,j

Oij

∥
∥zi − zj

∥
∥2

2 (12)

where G = [
Gij

] ∈ {0, 1}N×N , when the vertices vi and
vj are of different classes, let Gij = 1, (12) becomes:

min
Y

1

2
Tr((L + αG)O) + λ‖O − Q‖2

F (13)

Finally, the additional loss objective function with the
given labels is:

min
Y

ϕrefine = min
Y

1

2
Tr((L + αG)O) + λ‖O − Q‖2

F (14)

To maximize the exploration of network topology
optimization in GCN, the latest research is to promote
the classification of semi-supervised nodes through highly
modular networks. However, the information contained in
the classification nodes is ignored. Therefore, we propose
a topologically optimized graph convolutional network
simultaneously and jointly utilize the given labels and
estimated labels together. The flow chart for our design is
illustrated in Fig. 1c. The final objective function is:

min
min

ϕall = min
min

ϕclassify +ϕrefine +ϕe-classify +ϕe-refine (15)

where the primary item represents classification loss and
the next item represents topology refinement loss. The third
term is the classification loss including the estimated labels
and the fourth is the topology refinement loss with the
estimated labels and the given labels.

3.2 Topology optimization process analysis

Compared with supervised learning, the biggest drawback
of semi-supervised learning is that too little label informa-
tion is accessible. In this paper, we utilize the validation
set as a complement to the training set and apply estimated
nodes labels to supplement the participating training label
set. For the final objective function, we still employ the gra-
dient descent method to minimize the loss function. The first
term utilizes cross-entropy loss:

min
min

ϕclassify = min −
∑

n∈Vl

c∑

c=1

Znc log (Hnc) (16)
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The second term is an additional objective loss like (14),
the gradient of Lref ine relative to O is:

∂ϕrefine

∂O
= (L + αG − λQ) + λO (17)

where L + αG − λQ can be computed in advance and
remain fixed. However, the gradients ϕclassify and ϕe-refine

are dynamic. With the assistance of the gradient descent
optimization of the cross-entropy loss of the first term,
the prediction accuracy of the model for the validation set
is constantly improved. When the probability of a certain
category exceeds a set threshold, It considers this estimated
label equal to the real label. we employ the classification
results of the model on the validation set to construct
the label matrix Z′ of the validation set. It will approach
the actual label value of the validation set with gradient
optimization ϕclassify .

To make a full explore of estimated labels, we’ve mainly
worked on two aspects. On the one hand, the prediction
value of the classification result of the validation set is
compared with the threshold to obtain the estimated labels
set and then calculate the cross-entropy ϕe-refine of the
estimated labels and prediction labels.

On the other hand, let G′ =
[
G′

ij

]
∈ {0, 1}N×N , when

the vertices Vi and Vj are of different classes, let G′
ij = 1.

We construct the additional objective loss of the validation
set as:

ϕ′
e-refine = min

Y ′
1

2
Tr

((
L + αG′) Y ′Y ′T )

+λ

∥
∥
∥Y ′Y ′T − Z′Z′T

∥
∥
∥

2

F
(18)

where Y ′ is to combine the prediction labels of the training
set and the prediction labels of the validation set and then
scale the elements to RN×K . Z′ is to merge the given labels
and the estimated labels Ze and then scale the elements to
RN×K .

Then, let O ′ =
[
O ′

ij

]
= Y ′Y ′T ∈ R

N×N and Q′ =
[
Q′

ij

]
= Z′Z′T ∈ {0, 1}N×N , (18) can be rewritten to:

ϕ′
e-efine = min

Y ′
1

2
Tr

((
L + αG′) O ′) + λ

∥
∥O ′ − Q′∥∥2

F
(19)

Finally, cumulate the four parts to generate the objective
function we provide.

Compared with the existing semi-supervised classifica-
tion methods, we make full explore of the node labels that
have been classified and alleviate the problem of fewer
labels in semi-supervised classification. What E-GCN has
the advantages that related methods haven’t is fully explor-
ing estimated labels and the given labels. Analogous to
GCN and TO-GCN, we can utilize the given labels Y and
the estimated labels Y ′ to participate in the construction of
the network topology simultaneously. Although the E-GCN

objective function appears to be much more complex than
the GCN objective function, the time complexity of both E-
GCN and GCN is O(|E|CHF), where E is the number of
edges and C denotes the dimension of X and H refers to
the dimension of the hidden layer and F is the dimension of
the output layer. E-GCN is more flexible and can simulta-
neously add multiple validation sets, which can effectively
improve the accuracy of vertex classification.

It is worth noting that the effectiveness of our E-
GCN depends to some extent on the accuracy of GCN
classification. The more accuracy the GCN classification,
the better the E-GCN performance.

4 Experiments

In this section, we will evaluate the performance of E-GCN
via a large number of real experiments and provide some
visualizations to help illustrate.

4.1 Datasets

For Cora, Citeseer, and Pubmed datasets, the vertices rep-
resent documents and edges represent undirected citations
between documents. We follow the settings of prior exper-
iments of Kipf and Welling [3]. We utilized the network
topology, the features of all nodes, and the labels of 20 nodes
of each class. We also adopted the Adam optimizer with a
learning rate equal to 0. 1 and the regularization factor lim-
ited to 5e-4. All performance comparisons were performed
on 1000 test sets and 500 nodes were used for verifica-
tion. The statistics of the three databases are presented in
(Table 2).

The papers in the CiteSeer dataset are divided into six
broad categories, containing a total of 3312 papers, and
information on the references and citations between the
papers is recorded, while 3703 unique words are collated
and used as a feature word dictionary for the papers after
removing unused words and words that have a probability
of occurring less than 10 times in the document.

Cora is a dataset of 2708 machine learning papers, which
are grouped into seven different topics, each citing or cited
by at least one other paper, if the paper is viewed as a vertex
in the graph and the citation relationship is viewed as an
edge, then the graph has a total of 2708 vertices and 5429

Table 2 Datasets statistics

Dateset Nodes Edges Classes Features

Citeseer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433

PubMed 19,717 44,338 3 500
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edges. For each paper, the papers are represented by a 1433-
dimensional word vector, i.e., each paper has 1433 features,
words Each element of the vector corresponds to a word and
has only two values, 0 and 1, indicating whether the word
present in the paper.

The Pubmed dataset consists of 19,717 diabetes-related
papers from the PubMed database, divided into three
categories. There are a total of 44,338 sets of citation
relationships in the dataset. Each paper in the dataset is
described by a word vector from a dictionary of 500 unique
words.

4.2 Comparison with SOTAmethods

Baselines We compare our E-GCN model with several
SOTA approaches over three graph datasets, including GCN
(Graph Convolutional Network) [3], TO-GCN (Topology
Optimization based Graph Convolutional Network) [11],
AGNN (Attention-based Graph Neural Network) [14], GAT
(Graph Attention Network) [15], Chebyshev (Graph Convo-
lution with Chebyshev Filters) [18], LP (Label Propagation)
[21], SemiEmb (Semi-supervised embedding) [22], Deep-
Walk (Graph Embedding) [12], ICA (Iterative Classification
Algorithm) [23], Planetoid (Graph-based Semi-supervised
Learning Framework) [24], MoNet (Mixture Model Net-
works) [25], TAGCN (Topology Adaptive Graph Convolu-
tional Networks) [26], and DGCN (Dual Graph Convolu-
tional Networks) [27]. The codes of GCN have been pub-
lished by authors and we utilized them in the experiment and
made some modifications according to the requirements.

Results Table 3 summarizes the comparison results of three
citation network datasets. E-GCN∗ represents that we only
include the validation set in the training, while E-GCN
indicates that we include both the validation set and the
test volumes in the training, and the experimental results
demonstrate that the combination of more data is beneficial
for the performance of the model. Table 3 demonstrates
higher prediction accuracy on the semi-supervised nodes
classification of E-GCN by utilizing the estimated labels
and the given labels to participate in. E-GCN consistently
outperformed them on a node classification task for each
of the three benchmark datasets over the best-performing
approach achieves gains of up to 1.1%, 2.1%, and 0.7%.

4.3 Sensitivity analysis

We divide the data of the validation set into 10 groups
and add them to the training set in batches, and then
record the classification accuracy of the test set after each
training is completed. As illustrated in Fig. 2, after adding
the validation set data in batches, the accuracy of the
Cora classification has increased significantly, while the

Table 3 Node classification result

Methods Cora Citeseer Pubmed

SemiEmb [22] 59.0% 59.6% 71.7%

LP [21] 68.0% 45.3% 63.0%

DeepWalk [12] 67.2% 43.2% 65.3%

ICA [23] 75.1% 69.1% 73.9%

Planetoid [24] 75.7% 64.7% 77.2%

Chebyshev [18] 81.2% 69.8% 74.4%

GCN [3] 81.5% 70.3% 79.0%

MoNet [25] 81.7% 69.9% 78.8%

TO-GCN [11] 83.1% 72.7% 79.5%

AGNN [14] 83.1% 71.7% 79.9%

TAGCN [26] 83.3% 72.5% 79.0%

DGCN [27] 83.5% 72.6% 80.0%

GAT [15] 83.0% 72.5% 79.0%

E-GCN∗ 84.0% 74.1% 80.2%

E-GCN 84.6% 74.8% 80.7%

GAIN 1.1% 2.1% 0.7%

classification accuracy of the Pubmed has increased at a
limited rate. The performance improvement of the Pubmed
is limited, because the structure is messy and has fewer
features. The adaptability to the optimization of the network
topology is very poor, and it is difficult to obtain the optimal
learnable weights.

The same approach was followed to evaluate whether a
large dataset would improve the efficiency of the model,
using a similar method of joining all the data from the
test set in batches for training. The experimental results
are illustrated in the previous part of Fig. 3, and we could

Fig. 2 The classification accuracy adding various numbers of jointly
validation estimated labels
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Fig. 3 The classification accuracy after adding various numbers of
jointly test estimated labels

observe a significant improvement in our classification
performance when a large amount of data is included in
the training. The experimental results demonstrate that the
larger the amount of data to be included in the training of
the E-GCN model, the better the efficiency of the model.

Meanwhile, we attempt to figure out the law of growth
inaccuracy. The second half of Fig. 3 reveals that as we
increase the number of datasets we join, the tendency
for classification accuracy to rise becomes slower and
slower, and eventually stays the same, demonstrating that
classification accuracy does not rise significantly when we
continue to gather more data.

4.4 Additional experiments

Here we provide a brief additional experiment to prove the
validity of the E-GCN idea. Specifically, we deploy the idea
of E-GCN on DeepWalk to add the validation set and test set
of Cora and Citeseer to the training set in batches, with their

Fig. 4 Classification accuracy growth of different methods with
estimated labels

estimated labels also adopting the same settings as E-GCN,
and the experimental test results are illustrated in Table 4.

The results in Table 4, demonstrate that it is effective to
employ the E-GCN idea to incorporate training with data
to be tested in the future to boost the capabilities of the
model. Where E-DeepWalk* means that we only participate
in the training with data from the validation set, while E-
DeepWalk means that all data from both the validation set
and test set are joined to the training. The model’s ability to
effectively and consistently improve the model is improved
when validation set data is appended until the final model’s
accuracy stabilizes with the addition of a partial test set.

We compare the classification accuracy growth of nodes
with evaluation labels on GCN and DeepWork. As indicated
in Fig. 4, it is evident that the effect of our proposed method
is more satisfactory on GCN. It can be derived that the
higher the classification accuracy of the original method,
the more pronounced the improvement of the abilities of the
model after incorporating training with evaluated labels.

Table 4 The classification
accuracy of the deep walk with
estimated labels

Dataset E-DeepWalk∗ (%) E-DeepWalk (%) % GAIN

25% 50% 75% 100% 25% 50% 75% 100%

Cora 67.4% 67.6% 67.8% 67.7% 68.0% 68.0% 67.9% 68.0% 0.8%

Citeseer 43.5% 44.0% 44.3% 44.7% 44.9% 44.9% 44.9% 44.9% 1.7%

Pubmed 65.5% 65.4% 65.7% 65.7% 65.7% 65.7% 65.7% 65.7% 0.4%
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5 Conclusion

In this paper, we propose a novel Graph Convolution with
Estimated Labels for Semi-supervised Node Classification
(E-GCN). E-GCN integrates both the given labels and
the estimated labels into the topology learning of the
graph. This method can learn the topology of the
graph that is most suitable for GCN semi-supervised
classification. Experimental results demonstrate that E-
GCN is significantly better than existing GCN without using
estimated labels.
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